جداسازی طیفی با استفاده از الگوریتم HYCA بهبودیافته
Authors
Abstract:
Hyperspectral (HS) imaging is a significant tool in remote sensing applications. HS sensors measure the reflected light from the surface of objects in hundreds or thousands of spectral bands, called HS images. Increasing the number of these bands produces huge data, which have to be transmitted to a terrestrial station for further processing. In some applications, HS images have to be sent instantly to the station requiring a high bandwidth between the sensors and the station. Most of the time, the bandwidth between the satellite and the station is narrowed limiting the amount of data that can be transmitted, and brings the idea of Compressive Sensing (CS) into the minds. In addition to the large amount of data, in these images, mixed pixels are another issue to be considered. Despite of their high spectral resolution, their spatial resolution is low causing a mixture of spectra in each pixel, but not a pure spectrum. As a result, the analysis of mixed pixels or Spectral Unmixing (SU) technique has been introduced to decompose mixed pixels into a set of endmembers and abundance fraction maps. The endmembers are extracted from spectral signatures related to different materials, and the abundance fractions are the proportions of the endmembers in each pixel. In recent years, due to the large amount of data and consequently the difficulties of real-time signal processing, and also having the ability of image compression, methods of Compressive Sensing and Unmixing (CSU) have been introduced. Two assumptions have been considered in these methods: the finite number of elements in each pixel and the low variation of abundance fractions. HYCA algorithm is one of the methods trying to compress these kinds of data with their inherent features. One of the sensible characteristics of this algorithm is to utilize spatial information for better reconstruction of the data. In fact, HYCA algorithm splits the data cube into non-overlapping square windows and assumes that spectral vectors are similar inside each window. In this study, a real-time method is proposed, which uses the spectral information (non-neighborhood pixels) in addition to the spatial information. The proposed structure can be divided into two parts: transmitting information into the satellites and information recovery into the stations. In the satellites, firstly, to utilize the spectral information, a new real-time clustering method is proposed, wherein the similarity between the entire pixels is not restricted to any specific form such as square window. Figure 3 shows a segmented real HS image. It can be seen that the considering square form limits the capability of the HYCA algorithm and the similarity can be found in the both neighborhood and non-neighborhood pixels. Secondly, to utilize similarity in each cluster, different measurement matrices are used. By doing this, various samples can be achieved for each cluster and further information are extracted. On the other hand, usage of different measurement matrices may affect the system stability. As a matter of fact, generating the different measurement matrices is not simple and increases complexity into the transmitters. Therefore, it conflicts with the aim of CS theory, reducing complexity into the transmitters. As a result, in the proposed method, the number of the clusters is determined by the number of the producible measurement matrices. Figure 4 shows the schematic of the proposed structure in the satellites. In the stations, we follow HYCA procedure in equation 8 and 9, but the different similar pixels are applied to the both equations. By doing this, we reach to the improved HYCA algorithm. Finally, the proposed structure is shown in the Table 1. To evaluate the proposed method, both real and simulated data have been used in this article. In addition, normalized mean-square error is considered as an error criteria. For the simulated data, in constant measurement sizes, the effects of the additive noise, and for real data, the effects of measurement sizes have been investigated. Besides, the proposed method has been compared with HYCA and C-HYCA and some of the traditional CS based methods. The experimental results show the superiority of the proposed method in terms of signal to noise ratios and the measurement sizes, up to in the simulated data and in the real data, which makes it suitable in the real-world applications.
similar resources
تفکیک طیفی دادههای لرزهای با استفاده از طیفنگاشت واهمامیختی بهبودیافته
تفکیک طیفی ابزاری قوی برای تحلیل ماهیت متغیر با زمان سیگنالهای ناپایا است. با توجه به ماهیت ناپایای دادههای لرزهای، این ابزار بهطور گسترده در تحلیل، پردازش و تفسیر دادههای لرزهای به کار میرود. دست یافتن به روشی با قدرت تقکیک زیاد و حجم محاسبات کم از اهداف بنیادی در زمینه تفکیک طیفی است. روش تبدیل فوریه زمان کوتاه و طیفنگاشت آن اولین و سریعترین روشی است که در این زمینه عرضه شده است، اما...
full textحاشیهنویسی تصویر با استفاده از الگوریتم خوشهبندی نیمه نظارتی طیفی
Abstract: Due to the growth of digital images require efficient methods to annotate the images is sense. In this paper, a semi-supervised spectral clustering with relevance feedback is used to annotate digital photos which is overcome the local minima problem on clustering methods by using some labeled information given by users. Performance of the proposed method is tested on Corel 5K dataset ...
full textشبیهسازی زمینآماری سهبعدی دادههای مقاومت صوتی با استفاده از الگوریتم شبیهسازی متوالی مستقیم بهبودیافته
شبیهسازی زمینآماری امکان تولید مدلهای دو و سهبعدی با استفاده از دادههای اندازهگیری شده در محلهای محدود (چاه) را فراهم میکند. در این مطالعه، روش جدیدی به نام شبیهسازی متوالی مستقیم بهبودیافته ارائه شده و با روش شبیهسازی متوالی مستقیم رایج، برای شبیهسازی دادههای مقاومت صوتی مقایسه شده است. در الگوریتم رایج پارامترهای شبیهسازی واریوگرام و تابع توزیع احتمالاتی بهصورت کلی معرف...
full textتفکیک طیفی داده های لرزه ای با استفاده از طیف نگاشت واهمامیختی بهبودیافته
تفکیک طیفی ابزاری قوی برای تحلیل ماهیت متغیر با زمان سیگنالهای ناپایا است. با توجه به ماهیت ناپایای داده های لرزه ای، این ابزار به طور گسترده در تحلیل، پردازش و تفسیر دادههای لرزهای به کار میرود. دست یافتن به روشی با قدرت تقکیک زیاد و حجم محاسبات کم از اهداف بنیادی در زمینه تفکیک طیفی است. روش تبدیل فوریه زمان کوتاه و طیف نگاشت آن اولین و سریع ترین روشی است که در این زمینه عرضه شده است، اما...
full textسامانۀ تولید انرژی تجدیدپذیر ترکیبی با سیستم کنترل بهبودیافته با استفاده از الگوریتم جستوجوی هارمونی
In recent years, due to the economical advantages, environmental friendly attribute and renewable generation cycle, the renewable power sources have gained a great attention as a main alternative to traditional power resources. However, as a main deficiency, a renewable power system has low reliability, because of the stochastic and the un-deterministic generation pattern of these resources. In...
full textخوشهبندی خودکار دادهها با بهرهگیری از الگوریتم رقابت استعماری بهبودیافته
Imperialist Competitive Algorithm (ICA) is considered as a prime meta-heuristic algorithm to find the general optimal solution in optimization problems. This paper presents a use of ICA for automatic clustering of huge unlabeled data sets. By using proper structure for each of the chromosomes and the ICA, at run time, the suggested method (ACICA) finds the optimum number of clusters while optim...
full textMy Resources
Journal title
volume 14 issue 3
pages 37- 50
publication date 2017-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023